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Transmission Lines Loaded at Regular Intervals

SHASHI D. MALAVIYA, MEMBER, IEEE, AND V. P. SINGH

Abstract—By a mathematical armfysis, the switching time of an incident

wave is predieted for a terminated net in which equal, lumped capacitive

loads are repeated a finite number of times at regular intervals. The

amdysis is v#ld even for the ease of ordy a few Ioadsj for which the

distributed load approximation is poor. An APL program has been devel-

oped to Compnte the dela~ its use is demonstrated by an example. The
resrdts are extended to include complex loads.

I. INTRODUCTION

I NCIDENT wave switching is often required in high-

speed electronic systems, involving intercommunica-

tion among several regularly spaced clusters of chips

through printed wiring or conductors that are buried in

the packaging. The conductors act as uniform transmis-

sion lines. Common examples are address and control

lines feeding an array of memory chips, 1/0 lines between

CPU’s, etc. The lines usually end in matched terminators

to suppress unwanted reflections. Every connection to a

chip imposes a load on the transmission line which can

generally be treated as a lumped capacitance shunted by a
resistance. This is particularly true of high-speed current

switch circuits, for which the load consists of one or more

bases of current switches. Typically, such loads are spaced

several inches apart. The propagation delay in such cases

is calculated by the following popular approximation [1]:

T~= TO(l + CL/CO) 1’2 ns per unit length (1)

where

T= loaded delay,

TO unloaded delay,

CL load capacitance per unit length of the line,

CO unloaded line capacitance per unit length.

As will be seen later, the approximation given in (1) is

too crude in many practical situations. In this paper, we

have developed a more accurate closed-form solution for

calculating the propagation delay of the incident wave.

However, the expressions derived here apply only to the
incident wave and do not take into account subsequent

internal reflections. Also, this analysis is only valid for

linear, equally spaced identical loads.

In most of the high-speed systems, the incident wave

itself is required to switch the circuits, without waiting for

the subsequent reflections. The subsequent reflections can,
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therefore, be ignored, except in the cases where they are

so large as to cause false switching. This situation is

generally avoided by proper far-end termination and by

placing restrictions on the number, spacing, and magni-

tude of loads permitted on any line.

For two practical cases of step and ramp inputs, we

have developed analytical expressions for the final output

voltage in terms of the incomplete gamma functions.

Apart from being more accurate, our approach is easiiy

programmable. Another advantage of this approach is

that the effects of finite switching times of the input

signals are also accounted for, and the user can pick the

desired level (e.g., 90 or 95 percent of the final) up to

which he wants to calculate the delay.

Since only the forward wave is of interest in such cases,

ignoring the rereflected waves simplifies the analysis very

considerably. Furthermore, in practical situations involv-

ing, for example, six stubs, the rereflected waves are

highly attenuated by the time they reach the last load,

except for the one that rebounds between the last and

next to last loads. Since the nodes have negative reflection

coefficients, the rereflected waves add positively with the

incident wave. By ignoring the rereflected waves, there-

fore, we err on the safe side. The analysis also implies that

the stubs are well separated from each other so that the

outgoing wave reaches its final value before encountering

the next stub. The delay will increase if the stubs are

brought closer together. The delay in the extreme case,

when the spacing between the loads approaches zero, is

easily calculated by our approach.

Finally the total delay computed by using our approach

is compared with that of the approximation in (l), as well

as with the actual delay obtained from ASTAP [4].

11, ANALYSIS

Fig. 1 shows a uniform line with C pF at intervals of L

cm, giving a total capacitive load of nC pF for n such

loads. The far end of the line is terminated into YO which
is the characteristic admittance of the unloaded line. In

this analysis, we assume that the line constants Yo, r, and

C, etc., are “effective” values, almost constant over the

frequency range of interest so that their Laplace trans-

forms are independent of s. Let a positive-going voltage

wave V(s) be incident upon the line. The reflection coef-

ficient p(s) is given by

Y. – YL
p(s) =

Y.+ Y=
(2)
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Fig. 1. Transmission-line network, C given in picofarads.

where, neglecting rereflections

YL = Yo+ Sc. (3)

The transmission coefficient T(s) is given by

T(s) = 1 + p(s)= -& (4)

where

a=2Y0/C. (5)

The forward-going wave, after passing through all the n

sections (or stubs) is given by (again neglecting rereflec-

tions)

n

~out(s)= (A ) ()V,n s e- “s (6)

where ~ is the delay per section and P’i~(s) is the Laplace

transform of the input wave.
In (6), the term e- ““ represents the propagation delay

of the unloaded line through all the n stubs. Since the

computation of this delay is straightforward, we ignore it

initially and compute the degradation in the switching

time of iihe forward-going wave as it passes through the

loads. The total switching delay is then computed by

adding the propagation delay to the degraded switching

time. The degraded switching time is calculated from (6)

by dropping the propagation delay term from it. There-

fore, (6) reduces to

~out(s)= (= ) ()‘V,ns . (7)

This equation is strictly valid for the forward-going wave.

However as explained in the introduction, it can also be

used for computing the incident switching delays of high-

speed nets, consisting of a driver and a terminated trans-

mission line loaded at regular intervals with equal linear

loads. We shall use (7) in obtaining closed-form solutions

for step and ramp inputs.

III. STEP INPUT

For a step input

V,n(s) = A /s (8)

where A is the amplitude of the step. Substituting (8) in

(7) gives

J“out(s) = ‘an .
S(S + a)”

The inverse transform of (9) is, therefore, given by

(9)

v-out(t)= J ~n—le —x

(~ !1)! ,“’ ‘x
(lo)

TABLE I

VALUES OF n AND x FOR THE MOST COMMONLY NEEDED VALUES
OF ~(n,x)

x
n F(n, x) = 0.90— P(n, x) =: 0.95———

1 2.4 3.0
2 3.9 4.8
3 5.4 6.3
4 6.7 7.8
5 8.1 9.2

6 9.3 10.6
7 10.5 12.0
8 11.9 13.4
9 13.0 14.8

10 14.2 15.8

where

–J’
n—l r

‘(n’x)= # 1)! ox~
“-]e-’dt=l–e-x ~ ‘. (12)

~=~ r!

Equation (12) defines an incomplete gamma function,

whose values are tabulated in [2], [3]. The dellay T~, in

reaching 90 percent (or 95 percent) of the final value, is

given in Table 1.

The total switching delay T~ is given by

TD=TP+T~ (13)

where

T~ switching delay for reaching a specified lpercentage

(e.g., 90 or 95 percent) of the final level,,

TP total propagation delay through the n sections,

T~ rise or fall time up to the desired voltage level

(generally the switching threshold) of the forward-

going wave after passage through the lc)aded line.

The input voltage, being a step function, has zero rise or

fall time.

IV. RAMP INPUT

As shown in Fig. 2(a), a voltage ramp starting with a

delay c?,and with slope K is given by

P’(n(t)=KtU(t – 81).

If it is to level off after a total delay of

another ramp, as shown in Fig. 2(b):

Vi(t) = – KtU(t – 8Z).

(14)

?3Z,we must add

(15)

The final input is, therefore, as shown in Fig. 2(c):

Vin,(t)=Kt[ U(t–8,)– U(t–82)]. (16)

The Laplace transform of V,n(t) is

Vln(s):= (K/s2) [exp( – 81s) – exp( – 8ZS)]. (17)

The output voltage is given by substituting (17) in (7):

Vout(s) = ‘an [exp(- 81s)-exp(-- 82s)] (18)
S2(S+ a)”

=AP(n, at) (11) = J’-outl(s) – vout2(s) (19)
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where

and

I I I
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Fig. 2. Ramp input waveforms.

Voutl(s)=
Ka n

exp( – 81s)
s2(s+ a)”

vout2(s) =
Ka n

exp( – 82s).
s2(s + a)”

(20)

(21)

Since the two expressions are identical except for the

constants 81 and 82, the solution of VOutl(s) will also give

the solution of VOUtz(s).

Solution for VOU,l(t):

Let

Fl(s)= an
(s+ a)”

and

272(s) = (1/.s2)exp( – 6,s).

The corresponding inverse transforms are given by

and

f2(~)=(t– 8,) U(t – 8,).

Using the convolution theorem

F’(t) = (f,(t –y)f2(y)@

we have

i (t–y)”–l
qt,al)=an~ (n– I)! ,-.(,-Yj(~- al)U(y - ~J@

= ~n~,),~~(~-~)n-’e-a(’-y)(h)dvjvj

~%. (22)

Let x = a(t – 81); then

[J‘(t’al)=(n:1)! : ~x~
‘-’e-’~-~~xyne-’~ 1

=: P(n,x)–:P(n+l,x) (23)

where F’(n, x) is defined in (12).

Using the recurrence relation for incomplete gamma

functions [3]

P(n+l, x)= P(n, x)–~e-x (24)

we can write (23) as follows:

F(t, tll)= &P(n, x)–~~e-x. (25)

Now, using (20) and (25), we get

voutl(~)= KF(~,O (26)

A similar expression can be developed for (21):

v0u,2(t) = KF(t, 82) (27)

where F’(t, 82) is obtained from (22) and (25) by replacing

81 with 82. Finally, combining (19), (26), and (27), we get

VOU,(t) = K[ F(t, 81) – F(t,82) ]. (28)

Thus VouJt)is expressed in terms of incomplete gamma

functions. It can be evaluated directly from (28) as a

function of time from which the switching time up to the

desired output level is easily obtained as shown in the

following example.

Example: For the following input parameters:

Load capacitance 10 pF

Number of loads 4

Rise/fall time 6.0 ns

Final voltage level 2.0 v

Characteristic impedance 70 fl.

The VOUt(t) as a function of time is

O(0), 0(0.2), 0.001(0.4), 0.005(0.6), 0.014(0.8), 0.032(1),

0.057(1.2), 0.091(1.4), 0.132(1.6), 0.18(1.8), 0.233(2),

0.289(2.2), 0.349(2.4), 0.41(2.6), 0.474(2.8), 0.538(3),

0.603(3,2), 0,669(3,4), 0,735(3.6), 0.801(3,8), 0.867(4),

0.934(4.2), 1(4.4), 1.07(4.6), 1.13(4.8), 1.2(5), 1.27(5.2),

1.33(5.4), 1.4(5.6), 1.47(5.8), 1.53(6), 1.6(6.2), 1.67(6.4),

1.73(6.6), 1.79(6.8), 1.84(7), 1.88(7.2), 1.91(7.4), 1.93(7.6),

1.95(7.8), 1.97(8), 1.98(8.2), 1.98(8.4), 1.99(8.6), 1.99(8.8),

2(9), 2(9.2), 2(9.4), 2(9.6), 2(9.8), 2(10), . . . . 2(15).
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In the above example time t was taken in the interval

[0, 15] in steps of 0.2 ns. For each VOU,value, the time t is

given in the parentheses.

V. COMPLEX LOADS

Let the load consist of G + sC. Equations (3) and (4) are

then moclified to

YL=YO+G+SC (29)

and

T(s) = + (30)

where

a’=a+ G/C. (31)

Equation (7) can now be expressed as

v-out(s) = ; + Vin(s). (32)

The effect of adding a shunt conductance G to the load is,

therefore, accounted for by multiplying the final output

by the factor a/ a’ and replacing a with a’ throughout the

rest of the analysis.

Vii. COMPUTATIONS OF THE FINAL VOLTAGE

OUTPUT

An AF’L program is written to evaluate the final output

voltage cm the line as a function of time. In this program

we ignore rereflected waves in computing the output. We

presume that the far end of the line is terminated in its

characteristic impedance and that the stubs on the line are

well separated from each other, so that the voltage can

attain its final value before encountering the next stub.

Each stub is represented by a lumped capacitance of 10

pF. Fig. 3 gives results for 1–6 stubs on the line.

To show the effect of closer spacing of the stubs, the

extreme case of zero spacing between the stubs is also

worked cmt here; the results are given in Fig. 4. Clustering

N stubs together corresponds to a single stub with a load

of ION IpF. These results have been obtained from the

same general program by putting N= 1 and C= 10N.

Using the figures, we can find the output rise time for N

well-separated stubs on the line (with 10 pF per stub) and

compare it with the corresponding rise time for a single

stub with 10N pF load.

Table H gives the two rise times and their difference for

N= 1 through N= 6. Input rise time in this case is 2 ns.

Capacitive loading per stub was kept the same.

VII. TOTAL SWITCHING DELAYS

We now compute the total switching delay TD, given in

(13) for widely separated loads. This delay is calculated by

using three different methods, viz., popular approximation

5
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TABLE H
OUTPUT RISE ‘TsMs3 FORSTUBSPACING; INPUT RSSBTIME, 2 ns

—
Stubs

Nurdx%r Lumped Widely

of Stubs Together Separated Difference

1
2
3

3.50
5.50
7.50

3.50
4.25
5.00

0
1.25
2.50

i 9.75 5.50 4.25

5 11.75 6.25 5.50

6 13.75 6.75 7.00 _-
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Fig. 5. Transmission line with three widely separated loads.

given in (l), our closed-form solution given in (28), and

the ASTAP method [4].

A. Wide& Separated Loads

Fig. 5 shows a transmission line driven by a matched

source and terminated in its characteristic impedance ZO

at the far end. It is tapped with three equal capacitive

loads at regular intervals.

To illustrate the relative errors between the distributed

load approximation and the results derived in this paper,

we use the following example:

Line delay (unloaded)

Characteristic impedance

Capacitance per load

Total number of loads

Spacing between loads

Incident wave voltage

Input ramp rise time

Switching threshold of the

receiver (percentage of final level)

TO= 0.129 ns/cm

ZO=90Q

C=20pF

N=3
L=20cm

V=2V

T~=lns

=90 percent

Unz~orm@ Distributed Load Approximation: As stated in

the introduction, the loaded delay from (1) is

()

1/2

T~=TO l+% .
0

The unloaded line capacitance per unit length is

To 0.129
co=~=—=

0.09
1.43 pF per cm.

o

The load capacitance per unit length is

CL= ~ = l.OpF per cm.

Therefore, the loaded delay is

‘~=0129(1+*)’’2=001’8ns/cmo

Total propagation delay to the last load (node ‘A’) is

TP=3. TL.L= 10.08 ns.

With uniform load distribution, there is no distortion of

the input waveform and the rise time at the load, there-

fore, remains equal to the incident rise time T~, which for

90-percent threshold means an additional delay of 0.9 ns.

The total switching delay is, therefore, given by

T,= TP -t (90percent of T~) = 10.98 ns.

Forward Wave Approximation: Using (28), for N= 3 we

find that the rise-time delay to 90-percent level (1 V) is

+2. OV

G

~.
**

.<
&

*Q
>

$
.$

~Q

O.OV
9 10 11 12 13 14

Delay (.s)

Fig. 6. ASTAF’ output.

5.32 ns. To this we add the unloaded propagation delay to

the last node ‘A’ (7.74 ns). It gives a total switching delay

of 13.06 ns, according to the technique presented in this

paper.

Actual Delay: The actual waveshape, as obtained by

the ASTAP computer analysis, is shown in Fig. 6. The

switching delay to a 90-percent level is seen to be 13.07 ns.

The ASTAP program is valid for close, as well as widely

separated, equal or unequal complex loads. It takes into

account all the internal and end point reflections in its

computations.

B. Other Examples

Following the procedure outlined in Section VII-A, the

total delays in few other cases, computed by

ferent methods for thresholds ranging from

percent, are given in the following examples.

~x~@g&g1:

~.4~&@zTEBgQI mg EEZ’

c NTRVZO TO L

80122 0.09 0.129 100

TOTAL DELAY
-------------------------------

three dif-

10 to 95

.-
PERCENT POP . OUR ASTAP
LEVEL APPROX. METHOD (ACTUAL )
----- . ----- ------

10 16.302 14.17 14.166
50 17.102 16.442 16.468
90 17.902 22.236 22.258
95 18.002 24.731 24.754
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Ez4&LE 2:

PA RAMETEEZ Q~ ~tig Egg

c NTRVZO TO L

60112 0.09 0.129 60

TOTAL DELAY
. --------------------------------

PERCENT POP . OUR ASTAP
LEVEL APPROX. METHOD (ACTUAL )
----- ----- -

10 10.185
5 c 10.585
9 c 10.985
95 11.035

~L&yELE 3 :

Wfwwwiiii (2E

c NTRVZO

20 2

PERCENT

LEVEL
. . . . .

10

50
90
95

-. ..-,- -----
8.5085 8.508

10.127 10.16
14.473 14.495

16.344 16.365

12 0.09

. . . . . . . ..-
POP .

APPROX .
-- . . . .

6.8232
7.2232
7.6232
7.6732

0.129 20

TOTAL DELAY
. . . . . . . . . . . . . .

OUR
METHOD
------

6.0836
7.189U
9.1959

9.966

.-----.-
ASTAP

(ACTUAL)
------

6.081
7.3
9.306

10.119

EXAMPLE q ,

c NTRVZO TO L

20312 0.09 0.129 30

TOTAL DELAY
---------------------------------

PERCENT POP . OUR ASTAP
LEVEL APPROX. METHOD (ACTUAL)-..-- ------ ---

10 14.153 13.061 13.
50 14.553 14.528 14.
so 14.953 16.929 16.
S5 15.003 17.808 17.

c NTRVZO TO L

20 2

PEI?CENT

LEVEL
-----

‘1o
,j o

90
‘35

22 0.09

--------- .
POP .

APPROX .
----.-

27.7U1
28.541
29.341
29.441

0.129 100

TOTAL DELAY
. . . . . . . . . . . . . .

OUR
METHOD
------

27.023

28.381
30.436
31.212

-..
056
566
952
822

ASTAP

(ACTUAL )

27.018
28.398
30.446
31.207

859

&IMUE 6:

i?WtWWL? QE ME EEU

c NTRVZOTO L

20312 0.09 0.129 20

-.--------.-
PERCENT POP .

LEVEL APPROX.
----- ------

10 10.185
50 10.585
90 10.985
95 11.035

TOTAL DELAi’
---------------- ------

OUR AS TAP
METHOD ( ACTUAIL )
______ ------ -

9.1907 9.188
10.658 10.695
13.059 13.072
13.938 13.612

VIII. CONCLUSION

The approach presented in this paper gives a more

accurate closed-form solution (28) for incident switching

delays than the popular loaded-line delay approximation

given in (1). A glance at the comparative results given in

the previous section gives an idea of the errors involved

under different loading and switching conditions. It

should be noted that the increase in delay due to close

spacing of loads is not properly accounted for in this

approximation, the solution being exact only fcm widely

separated loads, Table II shows how the delay increases

when the stub spacing is reduced to zero (all the loads

lumped together).

Apart from being more accurate for a large number of

high-speed switching nets, the technique presented here is

easy to apply. However it should be used only where

multiple rereflections between the loads can be ignored.
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