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Transmission Lines Loaded at Regular Intervals

SHASHI D. MALAVIYA, MEMBER, IEEE, AND V. P. SINGH

Abstract—By a mathematical analysis, the switching time of an incident
wave is predicted for a terminated net in which equal, lumped capacitive
loads are repeated a finite number of times at regular intervals. The
analysis is valid even for the case of only a few loads, for which the
distributed load approximation is poor. An APL program has been devel-
oped to compute the delay; its use is demonstrated by an example. The
results are extended to include complex loads.

1. INTRODUCTION

NCIDENT wave switching is often required in high-

speed electronic systems, involving intercommunica-
tion among several regularly spaced clusters of chips
through printed wiring or conductors that are buried in
the packaging. The conductors act as uniform transmis-
sion lines. Common examples are address and control
lines feeding an array of memory chips, I/0O lines between
CPU’s, etc. The lines usually end in matched terminators
to suppress unwanted reflections. Every connection to a
chip imposes a load on the transmission line which can
generally be treated as a lumped capacitance shunted by a
resistance. This is particularly true of high-speed current
switch circuits, for which the load consists of one or more
bases of current switches. Typically, such loads are spaced
several inches apart. The propagation delay in such cases
is calculated by the following popular approximation [1]:

T, =Ty(1+C./ Co)l/ % ns per unit length )

T, loaded delay,

T, unloaded delay,

load capacitance per unit length of the line,
C, unloaded line capacitance per unit length.

As will be seen later, the approximation given in (1) is
too crude in many practical situations. In this paper, we
have developed a more accurate closed-form solution for
calculating the propagation delay of the incident wave.
However, the expressions derived here apply only to the
incident wave and do not take into account subsequent
internal reflections. Also, this analysis is only valid for
linear, equally spaced identical loads.

In most of the high-speed systems, the incident wave
itself is required to switch the circuits, without waiting for
the subsequent reflections. The subsequent reflections can,
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therefore, be ignored, except in the cases where they are
so large as to cause false switching. This situation is
generally avoided by proper far-end termination and by
placing restrictions on the number, spacing, and magni-
tude of loads permitted on any line.

For two practical cases of step and ramp inputs, we
have developed analytical expressions for the final output
voltage in terms of the incomplete gamma functions.
Apart from being more accurate, our approach is easify
programmable. Another advantage of this approach is
that the effects of finite switching times of the input
signals are also accounted for, and the user can pick the
desired level (e.g., 90 or 95 percent of the final) up to
which he wants to calculate the delay.

Since only the forward wave is of interest in such cases,
ignoring the rereflected waves simplifies the analysis very
considerably. Furthermore, in practical situations involv-
ing, for example, six stubs, the rereflected waves are
highly attenuated by the time they reach the last load,
except for the one that rebounds between the last and
next to last loads. Since the nodes have negative reflection
coefficients, the rereflected waves add positively with the
incident wave. By ignoring the rereflected waves, there-
fore, we err on the safe side. The analysis also implies that
the stubs are well separated from each other so that the
outgoing wave reaches its final value before encountering
the next stub. The delay will increase if the stubs are
brought closer together. The delay in the extreme case,
when the spacing between the loads approaches zero, is
easily calculated by our approach.

Finally the total delay computed by using our approach
is compared with that of the approximation in (1), as well
as with the actual delay obtained from ASTAP [4].

II. ANALYSIS

Fig. 1 shows a uniform line with C pF at intervals of L
cm, giving a total capacitive load of nC pF for n such
loads. The far end of the line is terminated into Y, which
is the characteristic admittance of the unloaded line. In
this analysis, we assume that the line constants Y, 7, and
C, etc., are “effective” values, almost constant over the
frequency range of interest so that their Laplace trans-
forms are independent of s. Let a positive-going voltage
wave V(s) be incident upon the line. The reflection coef-
ficient p(s) is given by

Yo" YL
Yo+ 7Y,

@)

p(s)=
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Fig. 1. Transmission-line network, C given in picofarads.

where, neglecting rereflections
Y, =Y,+sC. 3)
The transmission coefficient 7(s) is given by

T(s)=1+p(s)=

(4)

s+a
where
a=2Y,/C. (5)

The forward-going wave, after passing through all the »
sections (or stubs) is given by (again neglecting rereflec-
tions)

Voul)=( 57 ) Vinls)e ™™ 6)
where 7 is the delay per section and V.
transforra of the input wave.

In (6), the term e~ " represents the propagation delay
of the unloaded line through all the n stubs. Since the
computation of this delay is straightforward, we ignore it
initially and compute the degradation in the switching
time of the forward-going wave as it passes through the
loads. The total switching delay is then computed by
adding the propagation delay to the degraded switching
time. The degraded switching time is calculated from (6)
by dropping the propagation delay term from it. There-
fore, (6) reduces to

Vol )= == ) Vial). (7)

This equation is strictly valid for the forward-going wave.
However as explained in the introduction, it can also be
used for computing the incident switching delays of high-
speed nets, consisting of a driver and a terminated trans-
mission line loaded at regular intervals with equal linear
loads. We shall use (7) in obtaining closed-form solutions
for step and ramp inputs.

Vin(s) is the Laplace

st+a

III. StEeP INnPUT
For a step input
Via(s)=4/s (8)
where A4 is the amplitude of the step. Substituting (8) in
(7) gives

n

e 9
Vouls)= - (s Ppch )
The inverse transform of (9) is, therefore, given by
at o
Voult)= oDt 1)' f x""le"*dx (10)
= AP(n,at) (11)
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TABLE 1
VALUES OF 1 AND x FOR THE MosT COMMONLY NEEDED VALUES
OF P(n,x)
X
n_ P{n, x) = 0.90 P{n, x) = 0.95
1 2.4 3.0
2 3.9 4.8
3 5.4 6.3
4 6.7 7.8
5 8.1 9.2
6 9.3 10.6
7 10.5 12.0
8 11.9 13.4
9 13.0 14.8
10 14.2 15.8
where
n—1 x”
P(n,x)= f t"leTldt=1—~e"* D, —. (12)
( 1)' i=o !

Equation (12) defines an incomplete gamma function,
whose values are tabulated in [2], [3]. The delay T, in
reaching 90 percent (or 95 percent) of the final value, is
given in Table I.

The total switching delay T, is given by

Ty=T,+ Ty (13)

where

T, switching delay for reaching a specified percentage
(e.g., 90 or 95 percent) of the final level,

T, total propagation delay through the n sections,

Tr rtise or fall time up to the desired voltage level
(generally the switching threshold) of the forward-
going wave after passage through the loaded line.

The input voltage, being a step function, has zero rise or
fall time.

IV. Rawmp INrPUT

As shown in Fig. 2(a), a voltage ramp starting with a
delay 8, and with slope K is given by

V:()=KtU(t—8,). (14)

If it is to level off after a total delay of §,, we must add
another ramp, as shown in Fig. 2(b):

Vi(t)=— KtU(t— 8,). (15)
The final input is, therefore, as shown in Fig. 2(c):
m(t) K’[ U(t" 1) U(t_ 2):[ (16)’
The Laplace transform of V() is
Vials)=(K/s*)[exp(—8,s)—exp(—8,5) . (17)

The output voltage is given by substituting (17) in (7):
Ka” .
Voul®)= 530y gy [R(—0is) —exp(=8:9)] (18)

Voutl(s) - VoutZ(S) (19)
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Fig. 2. Ramp input waveforms.

where
Ka”
Vv §)=———exp(—8,s 20
outl() SZ(S+(Z)H p( 1) ( )
and
Ka”
Vou(s)= ————exp( — 8,s). 21
o= (=) )

Since the two expressions are identical except for the
constants §; and §,, the solution of V,(s) will also give
the solution of V_,,,(s).

Voutl(t):

Solution for
Let

n

__a
Fy(s)= (s+a)

and

Fy(s)=(1/5)exp(— 8,5).
The corresponding inverse transforms are given by

fl(f)‘ﬁz—w

t 1 —at

and
H(H)=(—8,)U(t-9)).

Using the convolution theorem

F()= fo = h()
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we have
n—1
F(1,8,)= af U y)l), e Iy ~8)U(y—8,)dy
S e
t>68;. (22)
Let x=a(t—4§,); then

F8)= Gy 5 e g [y s

=§P(n,x)—§P(n+1,x) (23)

where P(n,x) is defined in (12).
Using the recurrence relation for incomplete gamma
functions [3]

P(n+l,x)=P(n,x)—%;e"‘ (24)
we can write (23) as follows:
)— 2 x—, e > (25)
Now, using (20) and (25), we get
Vi (1) = KF(1,8,). (26)
A similar expression can be developed for (21):
Voua(t) = KF(1,8,) @7

where F(z,68,) is obtained from (22) and (25) by replacing
0, with §,. Finally, combining (19), (26), and (27), we get

Voul )= K[ F(1,8)) = F(1,8,) ]. (28)

Thus ¥V, (¢} is expressed in terms of incomplete gamma
functions. It can be evaluated directly from (28) as a
function of time from which the switching time up to the
desired output level is easily obtained as shown in the
following example.

Example: For the following input parameters:

Load capacitance 10 pF
Number of loads 4

Rise/fall time 6.0 ns
Final voltage level 20V

Characteristic impedance 70 .

The V,,(?) as a function of time is

0(0), 0(0.2), 0.001(0.4), 0.005(0.6), 0.014(0.8), 0.032(1),
0.057(1.2), 0.091(1.4), 0.132(1.6), 0.18(1.8), 0.233(2),
0.289(2.2), 0.349(2.4), 0.41(2.6), 0.474(2.8), 0.538(3),
0.603(3.2), 0.669(3.4), 0.735(3.6), 0.801(3.8), 0.867(4),
0.934(4.2), 1(44), 1.07(46), 1.13(4.8), 1.2(5), 1.27(5.2),
1.33(5.4), 1.4(5.6), 1.47(5.8), 1.53(6), 1.6(6.2), 1.67(6.4),
1.73(6.6), 1.79(6.8), 1.84(7), 1.88(7.2), 1.91(7.4), 1.93(7.6),
1.95(7.8), 1.97(8), 1.98(8.2), 1.98(8.4), 1.99(8.6), 1.99(8.8),
2(9), 2(9.2), 2(9.4), 2(9.6), 2(9.8), 2(10),- - -, 2(15).
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In the above example time ¢ was taken in the interval
[0, 15] in steps of 0.2 ns. For each ¥V, value, the time ¢ is
given in the parentheses.

V. ComprLEX LoaADs

Let the load consist of G+ sC. Equations (3) and (4) are
then modified to

Y, =Yy+ G+sC 29)
and
a
= 30
T(5)= —— (30)
where
a=a+G/C. (31
Equation (7) can now be expressed as
a da
Voul$)=— ~— Vinls)- (32)

The effect of adding a shunt conductance G to the load is,
therefore, accounted for by multiplying the final output
by the factor a/a’ and replacing @ with &’ throughout the
rest of the analysis.

V1. COMPUTATIONS OF THE FINAL VOLTAGE
OutPUT

An APL program is written to evaluate the final output
voltage on the line as a function of time. In this program
we ignore rereflected waves in computing the output. We
presume that the far end of the line is terminated in its
characteristic impedance and that the stubs on the line are
well separated from each other, so that the voltage can
attain ite final value before encountering the next stub.
Each stub is represented by a lumped capacitance of 10
pF. Fig. 3 gives results for 1-6 stubs on the line.

To show the effect of closer spacing of the stubs, the
extreme case of zero spacing between the stubs is also
worked out here; the results are given in Fig. 4. Clustering
N stubs together corresponds to a single stub with a load
of 10N pF. These results have been obtained from the
same general program by putting N=1 and C=10N.
Using the figures, we can find the output rise time for N
well-separated stubs on the line (with 10 pF per stub) and
compare it with the corresponding rise time for a single
stub with 10N pF load.

Table II gives the two rise times and their difference for
N=1 through N=6. Input rise time in this case is 2 ns.
Capacitive loading per stub was kept the same.

VIL

We now compute the total switching delay 77, given in
(13) for widely separated loads. This delay is calculated by
using three different methods, viz., popular approximation

ToTAL SWITCHING DELAYS
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Fig. 3. Output voltage versus time for a load of 10 pF /stub. Input rise
time, 2 ns.
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Fig. 4. Output voltage versus time, for a single stub. Input rise time,

2 ns.
TABLE 11
OutpruUT RiSE TIME FOR STUB SPACING; INPUT RISE TIME, 2 ns
Stubs
Number Lumped Widely
of Stubs Together Separated Difference
1 3.50 3.50 4]
2 5.50 4,25 1.25
3 7.50 5.00 2.50
4 9.75 5.50 4.25
5 11.75 6.25 5.50
6 13.75 6.75 7.00
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Fig. 5. Transmission line with three widely separated loads.

given in (1), our closed-form solution given in (28), and
the ASTAP method [4].

A. Widely Separated Loads

Fig. 5 shows a transmission line driven by a matched
source and terminated in its characteristic impedance Z,
at the far end. It is tapped with three equal capacitive
loads at regular intervals.

To illustrate the relative errors between the distributed
load approximation and the results derived in this paper,
we use the following example:

Line delay (unloaded) To=0.129 ns/cm
Characteristic impedance Z,=904Q
Capacitance per load C=20pF

Total number of loads N=3

Spacing between loads L=20cm
Incident wave voltage V=2V

Input ramp rise time Tp=1ns
Switching threshold of the

receiver (percentage of final level) =90 percent

Uniformly Distributed Load Approximation: As stated in
the introduction, the loaded delay from (1) is

CL 1/2
]}‘== ]b(],+'—2i;) .
The unloaded line capacitance per unit length is
T, 0.129
Co= 7. - 00 1.43 pF per cm.

The load capacitance per unit length is

C.= <. 1.0 pF per cm.

L
Therefore, the loaded delay is
1 1/2
TL=O.129(1 + m) =0.168 ns/cm.

Total propagation delay to the last load (node ‘4°) is
T,=3-T,-L=10.08 ns.

With uniform load distribution, there is no distortion of
the input waveform and the rise time at the load, there-
fore, remains equal to the incident rise time T, which for
90-percent threshold means an additional delay of 0.9 ns.
The total switching delay is, therefore, given by

T,=T,+ (90percent of T)=10.98 ns.

Forward Wave Approximation: Using (28), for N=3 we
find that the rise-time delay to 90-percent level (1 V) is

+2,0V

+1.5V

+1,.0V

@
S
< +0.5V

0.0V
9 10 11 12 13 14

Delay (ns)

Fig. 6. ASTAP output.

5.32 ns. To this we add the unloaded propagation delay to
the last node ‘4’ (7.74 ns). It gives a total switching delay
of 13.06 ns, according to the technique presented in this
paper.

Actual Delay: The actual waveshape, as obtained by
the ASTAP computer analysis, is shown in Fig. 6. The
switching delay to a 90-percent level is seen to be 13.07 ns.
The ASTAP program is valid for close, as well as widely
separated, equal or unequal complex loads. It takes into
account all the internal and end point reflections in its
computations.

B. Other Examples

Following the procedure outlined in Section VII-A, the
total delays in few other cases, computed by three dif-
ferent methods for thresholds ranging from 10 to 95
percent, are given in the following examples.

EXAMELE 1:

PERCENT POP, OUR ASTAP
LEVEL APPROX METHOD (ACTUAL)
10 16.302 14.17 14.166
50 17.102 16.442 16.468
90 17.902 22.236 22.258
95 18.002 24.731 24,754
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4 N TR V Z0 To L

60 1 1 2 0.09 0.129 60
TOTAL DELAY

PERCENT pop. OUR ASTAP
LEVEL APPROX. METHOD (ACTUAL)
10 10.185 8.5085 8.508
5C 10.585 10.127 10.16
9¢C 10.985 14.473 14,485
9% 11.035 16,344 16.365

EXAMRLE 3 :

20 2 1 2 0.09 0.129 20
TOTAL DELAY

PERCENT POP. OUR ASTAP
LEVEL APPROX. METHOD (ACTUAL)
10 6.8232 6.0836 6.081
50 7.2232 7.1894 7.3
30 7.6232 9.1959 9.306
95 7.6732 9.966 10,119

EXAMPLE 4 :
PARAMETERS OF THE NEL
c N TR V 20 TO L

20 3 1 2 0.09 0.129 30
TOTAL DELAY

PERCENT POP. OUR ASTAP
LEVEL APPROX. METHOD (ACTUAL)
10 14,153 13.061 13,056
§0 14.553 14.528 14.566
€0 14,953 16.929 16.952
¢5 15.003 17.808 17.822

EXAMPLE 5

20 2 2 2 0.09 0.129 100
TOTAL DELAY

PERCENT POP. OUR ASTAP

LEVEL APPROX. METHOD (ACTUAL)
(8] 27.741 27.023 27.018
50 28.541 28.381 28.398
90 29.341 30.436 30.4456
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EXAMELE 6:

PARAMETERS QOF IHE NET
c ¥ TR V 20 To L

20 3 1 2 0.09 0.129 20

TOTAL DELAY

PERCENT POP. OUR ASTAP
LEVEL APPROX. METHOD (ACTUAL)
10 10.185 8.1907 9.188
50 10.585 10.658 10.695%
90 10.985 13.05¢ 13.072
95 11.035 13.938 13.612

VIII. CoONCLUSION

The approach presented in this paper gives a more
accurate closed-form solution (28) for incident switching
delays than the popular loaded-line delay approximation
given in (1). A glance at the comparative results given in
the previous section gives an idea of the errors involved
under different loading and switching conditions. It
should be noted that the increase in delay due to close
spacing of loads is not properly accounted for in this
approximation, the solution being exact only for widely
separated loads, Table II shows how the delay increases
when the stub spacing is reduced to zero (all the loads
lumped together).

Apart from being more accurate for a large number of
high-speed switching nets, the technique presented here is
easy to apply. However it should be used only where
multiple rereflections between the loads can be ignored.
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